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ABSTRACT

We use rich clusters of galaxies in the Northern and Southern Galactic hemispheres
up to a redshift z = 0.12 to determine the cluster correlation function for a separation
interval ≈ 650 h−1 Mpc (h is the Hubble constant in units of 100 km s−1 Mpc−1).
We show that superclusters of galaxies and voids between them form a moderately
regular network. As a result the correlation function determined for clusters located
in rich superclusters oscillates: it has a series of regularly spaced secondary maxima
and minima. The scale of the supercluster-void network, determined from the period
of oscillations, is P = 115 ± 15 h−1 Mpc. Five periods are observed. The correlation
function found for clusters in poor and medium rich superclusters is zero on large
scales. The correlation functions calculated separately for the Northern and Southern
Galactic hemispheres are similar. The amplitude of oscillations for clusters in the
Southern hemisphere is larger by a factor of about 1.5.

We investigate the influence of possible errors in the correlation function. The
amplitude of oscillations for clusters in very rich superclusters is about 3 times larger
than the estimated error. We argue that the oscillations in the correlation function
are neither due to the double-cone shape of the observed volume of space, nor to the
inaccuracy in the selection function.

We compare the observed cluster correlation function with similar functions de-
rived for popular models of structure formation, as well as for simple geometrical
models of cluster distribution. We find that the production of the observed cluster
correlation function in any model with a smooth transition of the power spectrum
from a Harrison-Zeldovich regime with positive spectral index on long wavelengths to
a negative spectral index on short wavelengths is highly unlikely. The power spectrum
must have an extra peak located at the wavelength equal to the period of oscillations of
the correlation function. The relative amplitude of the peak over the smooth spectrum
is probably of the order of a factor of at least 1.25.

These quantitative tests show that high-density regions in the Universe marked
by rich clusters of galaxies are distributed more regularly than expected. Thus our
present understanding of structure formation needs revision.

Key words: cosmology; observations – clusters of galaxies; clustering – large-scale
structure of the universe; theory – galaxies

1 INTRODUCTION

A fundamental property of the distribution of galaxies is
clustering, manifested by the presence of groups and clus-
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ters of galaxies and quantitatively measured by the correla-
tion function. Due to clustering the correlation function of
galaxies has a large positive value at small separations. At
a separation of ∼ 30 h−1 Mpc the correlation function ap-
proaches (or crosses) zero and remains small on larger scales.
A correlation function of zero has been interpreted as an in-
dication of a random distribution of galaxies. This picture –
clustering on small scales and a random scale-free distribu-
tion on larger scales – formed the classical paradigm of the
large-scale distribution of galaxies and clusters of galaxies.

The discovery of superclusters consisting of clusters
and filaments of galaxies and huge voids between them has
changed this classical paradigm. According to available data
superclusters reside in chains and walls, separated by voids
of diameters of about 100 h−1 Mpc, and form a rather regu-
lar network (Einasto et al. 1994, Einasto et al. 1997c, here-
after Paper I). This raises a question about the existence of
some regularity in the distribution of superclusters of galax-
ies, and, if so, about the presence of a related scale in the
Universe.

The first clear demonstration for the possible presence
of a regularity in the distribution of galaxies on very large
scales came from a deep pencil-beam survey of galaxies by
Broadhurst et al. (1990). This survey covers small areas near
the North and South Galactic poles and has a depth of about
700 h−1 Mpc in both directions. The galaxy density shows
periodic peaks separated by ∼128 h−1 Mpc. In total over 10
peaks have been observed. Bahcall (1991) explained high-
density regions in the distribution of galaxies by the presence
of superclusters.

There has been much discussion regarding the implica-
tion of this result. Kaiser and Peacock (1991) have argued
that a peak in the one-dimensional spectrum can arise with-
out any large-scale feature in the three-dimensional distribu-
tion of galaxies. Dekel et al. (1992) investigated the problem
and showed that this periodicity is barely compatible with
Gaussian fluctuations in the framework of CDM-type sce-
narios of structure formation. Thus, the initial reaction to
the observation of Broadhurst et al. was that there is no
need to change the classical paradigm on the distribution of
matter on large scales.

However, other independent data on the possible pres-
ence of some regularity in the distribution of matter on large
scales in the Universe have accumulated. In the 70ies Shvarz-
man and Kopylov initiated a program to study the large-
scale distribution of matter. They used Abell (1958) clus-
ters of galaxies of richness R ≥ 2, and rich, compact clusters
from the list of Zwicky et al. (1961–69); redshifts were de-
termined for clusters up to z ≈ 0.3 in a region around the
Northern Galactic pole. This survey indicated the presence
of a secondary peak in the correlation function at ≈ 125
h−1 Mpc (Kopylov et al. 1984, 1988). Later the survey was
extended to the Southern Galactic hemisphere, and a peak
in the correlation function on the same scale was found (Feti-
sova et al. 1993). Mo et al. (1992a, b) and Einasto & Gra-
mann (1993) used a different method to analyse the cluster
correlation function, and the presence of a feature at ∼ 130
h−1 Mpc was confirmed. Similar scale was found in the dis-
tribution of clusters using other methods like the void and
pencil-beam analysis (Einasto et al. 1994, Paper I).

Landy et al. (1996) derived the 2D power spectrum of
the Las Campanas Redshift Survey and found a peak at

a wavelength 100 h−1 Mpc. The peak is due to numerous
density enhancements located at this characteristic mutual
separation. The same redshift survey was analysed also by
Tucker et al. (1995, 1997) and Doroshkevich et al. (1996)
who also found characteristic features on similar scales. A
∼ 100 h−1 Mpc scale has also been seen in the distribution
of QSO absorption line systems (Quashnock, Vanden Berk
& York, 1996).

During the past few years the number of redshifts de-
termined for rich clusters of galaxies has rapidly increased.
This makes a new analysis of cluster data worthwhile, as
the Abell-ACO cluster sample is the deepest almost full-sky
survey available at present. In this paper we study the corre-
lation function for clusters of galaxies using a recent compi-
lation of available data on clusters of galaxies by Andernach,
Tago, & Stengler-Larrea (1995, 1997). Our study follows ap-
proaches by Bahcall and Soneira (1983) and more recently
by Peacock and West (1992) and Einasto et al. (1993). How-
ever, in contrast to all previous studies we concentrate here
on large scales, i.e. well beyond 100 h−1 Mpc. To do this
we consider the whole dataset of clusters now available for
both the northern and southern Galactic hemispheres as a
single sample of depth ≈ 700 h−1 Mpc. The same dataset
has been used in Paper I to derive a catalogue of super-
clusters of galaxies and to study the spatial distribution of
clusters, by Jaaniste et al. (1997) to investigate the orienta-
tion and shape of superclusters of galaxies, and by Saar et
al. (1995) to determine the correlation function with a novel
method. Methodical problems connected with the determi-
nation and interpretation of the correlation function on large
scales are discussed separately by Einasto et al. (1997b, here-
after Paper III). The power spectrum for our cluster sample
was found and discussed by Einasto et al. (1997a, hereafter
E97).

The paper is structured as follows. In Section 2 we de-
scribe the observational data used and the selection func-
tions of the data. Section 3 is devoted to the analysis of the
correlation function of clusters of galaxies on large scales.
We determine the correlation function for the whole sample
as well as for subsamples of clusters in the Northern and
Southern Galactic hemispheres, and for cluster populations
located in rich and poor superclusters. In Section 4 we dis-
cuss the influence of the smoothing length, inaccuracy of the
selection function, and other factors on our results. In Sec-
tion 5 we compare our results with simulations using simple
geometrical models and results of N-body calculations for
the CDM model and a double power-law model. In Section 6
we derive the possible cluster power spectrum from models.
A summary of the main results is given in Section 7.

We use a Hubble constant ofH0 = 100 hkm s−1 Mpc−1.

2 DATA

The Abell–ACO catalogue of clusters of galaxies (Abell
1958, Abell, Corwin, & Olowin 1989) is presently the largest
available source of the large-scale distribution of matter in
the Universe covering the whole sky outside the Milky Way
zone of avoidance. We use for the present study a recent
compilation of measured redshifts for these clusters by An-
dernach, Tago, & Stengler-Larrea (1997). This compilation
gives redshifts for a total of about 2000 Abell–ACO clusters
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Table 1. Selection function parameters

Sample s0 d0N d1N d0S d1S

ACO.R.H8 0.38 1.00 0.80 1.00 0.80
ACO.R.L8 0.12 1.00 0.80 1.00 0.80
ACO.A.H8 0.36 1.00 0.50 1.00 0.50
ACO.A.L8 0.14 0.78 0.36 1.00 0.52

(including supplementary, or S-clusters). We used the 1995
version of the compilation, omitted all S-clusters and used
only clusters with measured redshifts up to z = 0.12. To this
sample we added all clusters with photometric redshift esti-
mates zest ≤ 0.12. Our full sample contains 1304 Abell–ACO
clusters of galaxies, 869 of which have measured redshifts.

We have included clusters of richness class 0 in our
study. About half of all clusters in the nearby region studied
are of this richness class and the number of objects is crucial
in the present work. Abell clusters of richness class 0 are X-
ray emitters and hosts of cD galaxies with extended haloes
as often as clusters of higher richness. Both facts suggest
that these clusters are physical objects which can be used
to trace the large-scale structure. Possible projection effects
discussed by Sutherland (1988), Dekel et al. (1989) and oth-
ers are not crucial for the present study as we are mostly
interested in the distribution of clusters on large scales. A
small excess of cluster pairs on small separations noted by
Sutherland and Dekel et al. can be considered as an addi-
tional selection effect.

This sample was used in Paper I to derive a new cat-
alogue of superclusters and to study their spatial distribu-
tion. In the present paper we use both the cluster sample
and the supercluster catalogue. The use of the superclus-
ter catalogue gives us the possibility to analyse the distri-
bution of clusters in different environments. Superclusters
were determined using a “friends-of-friends” technique with
neighbourhood radius 24 h−1 Mpc. This radius was chosen
on the basis of the multiplicity function which shows that
individual superclusters start to become evident at a neigh-
bourhood radius of about 16 h−1 Mpc; at radii larger than
30 h−1 Mpc superclusters begin to join into huge agglom-
erates with dimensions exceeding the characteristic scale of
the supercluster-void network. Thus the neighbourhood ra-
dius must lie within these boundaries. The influence of this
radius on our results for the correlation function shall be
studied below (Section 4.3).

In Paper I superclusters were divided into richness
classes according to their multiplicity (the number of mem-
ber clusters in superclusters). It was also shown that the
overall distribution of superclusters of different richness is
rather similar: superclusters are located in chains that form
a fairly regular network. The mean diameter of voids be-
tween superclusters is ∼ 100 h−1 Mpc. The skeleton of the
supercluster-void network is formed by very rich superclus-
ters. Poor and medium rich superclusters as well as isolated
clusters are scattered around them, leaving void interiors
empty of rich clusters. The distribution of superclusters in
void walls depends on the supercluster richness: the mean
separation between poor and medium rich superclusters is
small and has a smooth distribution whereas the separation
between very rich superclusters is much larger and its dis-
tribution is peaked: over 75 % of very rich superclusters are

located at separations 110− 150 h−1 Mpc on opposite sides
of voids.

This finding motivated us to study the correlation func-
tion of clusters of galaxies located in superclusters of differ-
ent richness. As in Paper I we divide cluster samples into
populations using the supercluster richness as the param-
eter which determines the mean density of the large-scale

environment of clusters (see Frisch et al. 1995). In contrast
to Paper I we divide superclusters into only two richness
classes with variable richness threshold. We shall use the fol-
lowing nomenclature of cluster samples. The first 3 capital
letters ACO denote clusters from the Abell–ACO catalogue
(excluding S-clusters); the following capital letter indicates
whether we use the sample of all clusters (A) or the sample
of clusters with measured redshifts (R); the following capital
letter denotes cluster samples in high-, or low-density envi-
ronments (respectively H or L); the last number indicates
the limiting multiplicity Ncl of superclusters used to divide
the sample into high- and low-density populations. Clusters
belonging to superclusters with at least Ncl members were
attributed to the high-density population, and isolated clus-
ters as well as clusters in superclusters with less than Ncl

members to the low-density population.

To calculate the correlation function of clusters of galax-
ies we generate Poisson samples of test particles with the
same shape and selection function as the real samples. The
selection effects depend on Galactic absorption, on the diffi-
culty to find lower richness clusters at large distances, on the
decrease in the fraction of clusters with measured redshifts
with distance, the differences in the mean density of clusters
in the Abell and ACO catalogues, etc.

Poisson samples must be generated with all these ef-
fects taken into account. We have calculated the selection
function as a function of two variables, the Galactic lati-
tude b, and the distance from the observer r, separately for
the Northern and Southern Galactic hemispheres. We deter-
mined selection functions for clusters populating rich and
poor superclusters, using a threshold richness of Ncl = 8.
The influence of the choice of the threshold richness Ncl

shall be discussed in the next Section.

In Figure 1 we show the results of the determination of
the selection function for clusters of galaxies with measured
redshifts. The number of clusters vs. the Galactic latitude
was determined as a function of sin b. Differences between
the two hemispheres are small, thus in Figure 1 we present
the mean of both hemispheres. Data are normalised to unit
density at sin b = 1. We see an almost linear decrease of the
number density of clusters with sin b. This linear regression,
D(b) = (sin b − sin b0)/(1 − sin b0), is given by the value
s0 = sin b0 where the density of cluster reaches 0, and it
was used to calculate Poisson samples for the correlation
function.

To determine the distance dependence of the selection
function the spatial density of clusters of galaxies was calcu-
lated in concentric spherical shells of thickness 20 h−1 Mpc,
for each hemisphere separately. Fluctuations are rather
large, thus for this sample of clusters the mean regression
was derived for both hemispheres. The spatial density can
be represented by a linear law: D(r) = d0 − d1(r/r1), where
d0 and d1 are constants, and r1 is the outer radius of the
sample. Values of the selection function parameters d0, and
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Figure 1. Selection functions for clusters of galaxies. The volume density of clusters is shown as function of the sine of Galactic latitude
b (upper panels) and as function of distance r from the observer (lower panels). In the upper panels the density is given in units of
the density near the Galactic pole (i.e. sin b = 1); in the lower panels in arbitrary units. In the left panels only clusters with measured
redshifts were used; in the right panels we used all clusters. Dashed lines are for clusters located in low-density environments (isolated
clusters and clusters in superclusters with less than 8 members); solid lines are for high-density regions (clusters in superclusters with at
least 8 members). Dashed and solid straight lines represent linear approximations of the selection function.

Figure 2. The correlation function of clusters of galaxies with measured redshifts. The left panel is for the sample of all clusters
(ACO.R.H1). In the right panel data on high- and low-density populations are given separately. Solid lines show the correlation function
for the samples ACO.R.H4 and ACO.R.L4; the error corridor for high- and low-density cluster populations is marked with short and
long-dashed lines, respectively. The overall curved shape of the correlation function is due to cosmic variance (compare with Figure 7 of
Paper III).

d1, found for various subsamples of clusters, are given in
Table 1.

A similar analysis of the selection function was made
for the sample of all 1304 clusters. Here, too, the sample
was divided into high- and low-density populations using
the same threshold Ncl = 8. Table 1 shows that parameters
of the distance dependence in the Northern and Southern
hemisphere (denoted with subscripts N and S, respectively)
are identical in most cases. Only the cluster sample of all
clusters in low-density regions is large enough to determine

parameters of the distance dependence separately for both
hemispheres. Here d0N is smaller than d0S , which reflects the
fact that the number-density of the Northern cluster sample
is lower than that of the Southern one. Parameters for the
selection effect in Galactic latitude are similar for the sample
of all clusters and that of clusters with measured redshifts.
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Figure 3. The correlation function for all clusters (samples ACO.A.H8 and ACO.A.L8 in the left panel), and for clusters with measured
redshifts (samples ACO.R.H8 and ACO.R.L8 in the right panel). Solid, dashed, and dotted lines have the same meaning as in Figure 2.

3 THE CLUSTER CORRELATION

FUNCTION

3.1 Deep cluster samples

In this Section we discuss the correlation function of Abell–
ACO clusters of galaxies in various environments. As noted
above, clusters in high-density environment (rich super-
clusters) form a fairly regular three-dimensional network,
whereas clusters in low-density environment (isolated clus-
ters and clusters in poor and medium rich superclusters, or
simply poor superclusters) are located in their vicinity more
irregularly (Paper I). To determine which limiting richness
Ncl divides clusters naturally into high- and low-density en-
vironment, we calculated the correlation functions for both
populations using limiting richnesses between Ncl = 1 and
Ncl = 8. For Ncl = 1 per definition there are no clusters
in the low-density population (since low-density population
consists of clusters in superclusters of multiplicity less than
Ncl). Results for Ncl = 1, 4, and 8 are shown in Figures 2
and 3 for clusters with measured redshifts.

These Figures show that the correlation function of clus-
ters in rich superclusters has a number of quasi-regularly
spaced secondary maxima and minima (in addition to the
main maximum at small separation). This phenomenon is
the main finding of the present paper and we shall refer to
it as the oscillation of the correlation function.

In contrast to the correlation function of clusters in rich
superclusters the correlation function of clusters in poor su-
perclusters approaches zero smoothly after the initial max-
imum. The nearest neighbour test and void analysis show
(Paper I) that clusters in poor superclusters are located
more irregularly in void walls between rich superclusters and
thus secondary peaks of the correlation function due to in-
dividual poor superclusters cancel each other out.

Parameters of the oscillations of the correlation func-
tion for clusters in rich superclusters are given in Table 2: N
is the number of clusters in the sample; rmin is the location
of the first secondary minimum of the correlation function;
rmax is the location of the first secondary maximum; Amax

is the amplitude, which is defined as half of the difference of
the value of the correlation function between the first sec-
ondary maximum and minimum; σξ is the mean 1σ error
of the correlation function, which determines the width of

the error corridor; ∆21 and ∆32 are distances between sec-
ondary maxima indicated by respective indices; and ∆mean

is the mean separation of the secondary maxima, and of
the secondary minima. Positions of the maxima and min-
ima and differences between them are given in h−1 Mpc.
The mean error was calculated from Eq. (16) of Paper III.
Essentially the error is determined by the cosmic variance
(i.e. the variation of the correlation function in different vol-
umes of space):

σξc =
b√
N
, (1)

where b is a parameter introduced in Paper III to describe
the dependence of the error on the character of the large-
scale distribution of clusters of galaxies. It must be deter-
mined from mock samples. We have done this (for details see
Paper III) and found that b ≈ 1.5, see also the discussion in
Sect. 4. As we see from the above equation, the width of the
error corridor for the cosmic variance is constant.

We see from Table 2 that the amplitude of oscillations
increases with the increase of the minimum supercluster
richness Ncl. This leads us to the conclusions that, for low
values of Ncl, we actually have a mixture of populations
in the high-density population, and that the proper divi-
sion of populations occurs at the highest minimum richness,
Ncl = 8. To check this result we have calculated the correla-
tion function separately for clusters located in superclusters
of medium richness, from Ncl = 4 to Ncl = 7. The corre-
lation function of this subpopulation shows only marginal
signs of oscillations. Thus we can accept Ncl = 8 as the
limiting richness to select the regularly distributed popula-
tion of clusters in rich superclusters. This analysis confirms
results found in Papers I and III: a smooth distribution in
void walls leads to a non-oscillating correlation function in
the case of clusters in poor superclusters; oscillations occur
only in the case if rich superclusters are located in a quasi-
regular rectangular lattice.

In Table 2 we give parameters of the oscillating correla-
tion function for the cluster population with measured red-
shifts. The sample of all clusters was also divided into high-
and low-density populations, and parameters of the corre-
lation function were determined. Results for samples with
measured redshifts and for all clusters are given in Figure 3.
In this case we see that, on large scales, clusters in rich super-
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clusters have an oscillating correlation function and clusters
in poor superclusters have a zero correlation. Parameters of
the oscillations of clusters in rich superclusters have values
very close to values for the sample of clusters with measured
redshifts; only the amplitude of oscillations is smaller by a
factor of about 1.5. A smaller amplitude for the sample of all
clusters is likely due to the larger observational errors in the
photometric redshifts, which smooth out features slightly in
the correlation function.

Now we compare the error in the correlation function
for subsamples with various limiting richness Ncl. We see
that the amplitude of oscillations for the sample ACO.R.H8
is approximately three times larger than the error; i.e., we
are able to establish the presence of oscillations at a 3σ
level. For the sample of clusters of all richness classes taken
together (ACO.R.H1) the error is approximately equal to
the amplitude of oscillations. This shows that the division of
clusters into high- and low-density populations is crucial to

demonstrate the presence of oscillations. (We note, however,
that the power spectrum of the cluster population in rich
superclusters is almost identical in shape to the spectrum of
the whole cluster population.)

3.2 Cluster samples in the Northern and

Southern hemispheres

Now we determine the cluster correlation function separately
for the Northern and Southern Galactic hemispheres. To in-
crease the number of clusters we use the sample of all clus-
ters, and divide this sample again into rich and poor super-
clusters using the limiting richness Ncl = 8. Figure 4 shows
the correlation function of clusters located in rich superclus-
ters separately for both Galactic hemispheres. We see that
there are some differences between the correlation functions.

The oscillatory behaviour is very clear in both cases,
and the period of oscillations is identical (see Table 2). The
basic difference lies in the amplitude, which is smaller for the
Northern hemisphere. This suggests that the supercluster-
void network is less regular in the Northern hemisphere. It is
interesting to note that Landy et al. (1996) have determined
the power spectrum of galaxies in the deep Las Campanas
Redshift Survey separately for the Northern and Southern
Galactic hemispheres. The Southern samples have a strong
peak at a wavelength ≈ 100 h−1 Mpc, whereas in North-
ern samples this feature is much weaker. The similarity of
these independent measures of the regularity of the struc-
ture suggests, first of all, that both methods (the correla-
tion and spectral analyses) work and that they measure the
large-scale regularity of the structure. Secondly, these results
indicate that there are small-but-definite differences in the
large-scale distribution of high-density regions in the nearby
Universe. In other words, Northern and Southern samples,
taken separately, do not form fair samples of the Universe.

3.3 Mean parameters of oscillations

The grid size of the supercluster-void network can be deter-
mined from data given in Table 2 using relations between
the grid size and parameters given in Paper III. All scaling
parameters depend on the period P which is equal to the
grid size of the supercluster-void network (see Section 4.4

of Paper III). The most accurate value of the period comes
from the relation P = ∆mean/1.01; here ∆mean is the mean
separation between maxima and between minima. We get

P = 115 ± 15 h−1Mpc. (2)

The variance of the mean period is given mainly by the error
of positions of the last maximum and minimum. The error in
the location of the outermost extrema is 25 h−1 Mpc which
contributes an error of 5 h−1 Mpc in P . The actual error
is larger as we must take into account also possible cosmic
scatter of the grid size in different volumes. Comparison of
different subsamples yields the error estimate given in (2).
We note that the value of the period of oscillations is very
close to the mean separation between rich superclusters lo-
cated on opposite sides of voids. The latter separation was
found to be 120 h−1 Mpc in Paper I.

The amplitude of oscillations is given by the amplitude
of the first secondary maximum for clusters with measured
redshifts located in rich superclusters:

A = 0.28 ± 0.05. (3)

The error of the amplitude is estimated on the basis of the
scatter of estimates of the amplitude for different subsamples
and of the Poisson error of data.

3.4 The parameters of the correlation function

Here we determine the numerical relations between various
parameters of the correlation function. As demonstrated in
Paper III, the separation of the first secondary maximum of
the correlation function from zero is always larger than the
period of oscillations, and the difference between the second
and first secondary maximum is always larger than the dif-
ference between the third and second secondary maximum.

Using the observed correlation function parameters in
Table 2 we found the following relations: f1 = rmax/P =
1.20; f21 = ∆21/P = 1.16; and f32 = ∆32/P = 0.84; where
∆21 and ∆32 are mean separations of respective maxima
of the correlation function. A comparison of numerical val-
ues for these parameters with respective values found for
model samples in Paper III shows rather close agreement.
This agreement is an additional argument indicating the re-
ality of our results.

3.5 The correlation length

In this paper the major emphasis is on the study of the cor-
relation function of clusters of galaxies on large scales. Our
data contain information also on the correlation function on
small scales, and in this Section we discuss our results for
the determination of the correlation length. This parameter
is defined as the value of the separation r = r0 at which
the correlation function ξ(r0) = 1. This parameter depends
critically on the characteristic size of superclusters.

We determined the correlation length using non-
smoothed correlation functions since smoothing increases it.
As for other parameters, the correlation length was found
separately for cluster samples in rich and poor superclusters.
Results are interesting: for clusters in rich superclusters the
correlation length is

r0 = 46 ± 5 h−1Mpc, (4)
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Figure 4. The correlation function calculated separately for the Northern (left panel) and Southern (right panel) Galactic hemispheres
for all clusters located in rich superclusters. Error corridors are also given.

Table 2. Parameters of the correlation function for various cluster samples

Sample N rmin rmax Amax σξ ∆21 ∆32 ∆mean

ACO.R.H1 869 78 144 0.056 0.051 126 116 122
ACO.R.H2 624 79 131 0.056 0.060 137 117 122

ACO.R.H4 433 78 136 0.134 0.072 134 108 123
ACO.R.H6 331 83 140 0.200 0.082 132 108 120
ACO.R.H8 261 88 138 0.279 0.093 133 104 116

ACO.A.H8N 152 94 133 0.069 0.130 132 103 118
ACO.A.H8S 167 97 143 0.275 0.124 140 105 118

and for clusters in poor superclusters

r0 = 17 ± 3 h−1Mpc. (5)

The errors are estimated on the basis of the scatter from
samples for various minimum multiplicity. Differences in the
correlation function at small scales are seen also in Figures 2
and 3, although the smoothing makes the correlation length
appear larger.

These differences are expected when we take into ac-
count the geometric meaning of the correlation length – it is
close to the mean minor diameter of systems of clusters. Poor
superclusters are small, but rich ones have much larger di-
ameters (Jaaniste et al. 1997). Similar differences are found
also for clusters in rich and poor superclusters in models
(Paper III). These calculations show that there exists no
unique correlation length for clusters; it is in fact a function
of cluster environment (the size of superclusters).

4 TESTING THE REALITY OF

OSCILLATIONS

The presence of oscillations in the cluster correlation func-
tion was first established by one of us (VS) in December
1994 and presented in a preprint by Saar et al. (1995). Since
then we have discussed this result at several conferences and
seminars. During these discussions a number of questions
were raised: Perhaps the local minima and maxima of the
correlation function are just a random noise or due to se-
lection effects, supercluster definition, smoothing, or some
other disturbing effect? And if oscillations are real, can they
be reproduced in the framework of conventional CDM cos-
mogony with Gaussian initial fluctuations, or do they de-

mand a radical change of our paradigms on the formation
of structure in the Universe? To answer these questions we
have performed a number of tests. In this Section we discuss
the reality of oscillations.

4.1 Errors in the correlation function

The most serious question is related to errors in the corre-
lation function. Often the errors in the correlation function
are calculated from Poisson statistics. Mo, Jing, & Börner
(1992) have shown that the cosmic variance is much larger
than the Poisson noise, and our results have confirmed this.
Einasto & Gramann (1993) determined the error corridor
by a bootstrap procedure. This method is also not very ac-
curate since it cannot handle real variance of samples in
different volumes of space. The only way to get an idea of
the possible effect of this cosmic variance is to study various
models of the cluster distribution.

Results of this study are presented in detail in Paper
III. It is shown that the error corridor of the correlation
function due to cosmic variance depends on the size of the
sample (the number of particles N) and the nature of the
distribution of particles, and can be parameterised by Eq.
(1) presented above. The parameter b of this equation has a
value about b ≈ 1.5 in models which have a large-scale distri-
bution of clusters similar to the observed distribution. In our
calculations we have used this value of the error parameter.
The amplitude of oscillations of the correlation function for
the subsample of clusters in rich superclusters ACO.R.H8
is about 3 times larger than the error; thus cosmic errors
do not play an important role. If we use the sample of all
clusters with redshifts (ACO.R.H1) then the amplitude of
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the correlation function is approximately equal to the cos-
mic variance (cf. Figure 2). Thus it is essential to divide the
cluster sample into two populations with different proper-
ties of the spatial distribution to establish the oscillatory
behaviour of the cluster correlation function.

4.2 Sample shape

Since the sample volume has the form of a double cone and is
restricted to a limiting distance, we will now check whether
the curious shape of the sample can artificially generate os-
cillations in the correlation function.

The strongest evidence against such an effect comes
from the comparison of samples in rich and poor superclus-
ters (cf Figures 2, 3). Both samples occupy identical double-
cone shaped volume. The only difference lies in the spatial
distribution of clusters within the double conical volume. It
is very difficult to assume a selective influence of the sample
volume shape so that in case of clusters in rich superclusters
the shape generates oscillations in the correlation function
and in case of clusters in poor superclusters it produces a
smooth correlation function near zero. The difference must
be intrinsic.

To check this problem we studied in Paper III the influ-
ence of the sample shape on the correlation function. Results
show that the double conical sample has about a factor of
4 times fewer particles than the whole cubical sample, and
thus cosmic variance is larger, but the value of the error pa-
rameter b is almost the same as for the whole cubical sample.
In the cases in which structural elements (clusters in high-
density regions) led to an oscillatory behaviour of the corre-
lation function, these were present in sufficient quantity also
when restricting the sample volume to a double-cone. If the
size of the conical sample is very small, then characteristic
elements which determine the oscillating properties of the
correlation function are not present in sufficient quantities
and the correlation function becomes irregular.

4.3 Supercluster selection

The supercluster catalogue used in this study was compiled
in Paper I using a neighbourhood radius 24 h−1 Mpc. Is this
radius crucial for the oscillatory behaviour of the correlation
function?

The dependence of the supercluster catalogue on
the neighbourhood radius was investigated by Einasto et
al. (1994). For neighbourhood radii ≥ 32 h−1 Mpc almost
all clusters join to form one huge percolating system. Thus
it is clear that a meaningful neighbourhood radius must be
smaller than this value. If the radius is very small then we
select as superclusters only the highest density peaks of the
distribution of clusters, and the number of clusters in super-
clusters becomes too small for the determination of the cor-
relation function. To determine the influence of this param-
eter we compiled superclusters using a series of values of the
neighbourhood radius: 12, 16, and 20 h−1 Mpc. For all cases
the correlation function for clusters was calculated. The re-
sults indicate that with decreasing neighbourhood radius the
amplitude of oscillations of the correlation function increases
since only very compact superclusters will be selected. How-
ever, positions of the maxima are practically the same as

for the adopted neighbourhood radius (24 h−1 Mpc). This
test shows that the oscillating behaviour and parameters of
oscillations are quite stable and do not depend on the choice
of the neighbourhood radius.

4.4 Smoothing scale

To investigate the influence of the smoothing length on our
results we calculated the correlation function for one sample
with various values of the dispersion σs. Results are shown in
Figure 5. This calculation shows that there is no principal
difference between results for different smoothing lengths.
Main parameters of the correlation function (the period and
positions of the maxima and minima) change only within a
few per cent. The largest change is in the amplitude of os-
cillations, which decreases considerably with the increase of
the smoothing length. To avoid the influence of the smooth-
ing we determined the amplitude from non-smoothed data.
In all Figures we have used smoothing length, σs = 13 − 15
h−1 Mpc. This almost completely removes the Poisson noise,
and is sufficient to investigate details of the correlation func-
tion above a scale of 30 h−1 Mpc.

4.5 Selection function

One frequently asked question is the influence of the selec-
tion function. If the feature investigated is of the same scale
as the depth of the sample then small errors of the selection
function can seriously influence the results. To investigate
the influence of the selection function in our case we calcu-
lated the correlation function of one sample for a number of
different selection function parameters used in the calcula-
tion of comparison Poisson samples. Results are presented
in Figure 5. In all cases the same procedure was applied
to calculate the selection function (discussed in Section 2
above). Only the parameters of the selection function were
changed. As test sample we chose clusters in rich superclus-
ters (ACO.R.H8). In this case the number-density of clus-
ters decreases very rapidly with increasing distance from the
Galactic pole (cf. Figure 1). If we ignore this rapid decrease
and adopt a standard value for the selection parameter (as
for all clusters), s0 = 0.14, then the overall mean slope of
the correlation function changes. If we change the param-
eter which determines the decrease of the number-density
of the sample with distance and adopt too low a value for
the number-density on the far side of the sample (d1 = 0.9
instead of the correct value d1 = 0.8), then the whole cor-
relation function on large scales increases. Both changes of
selection function parameters have, however, little effect on
the main parameters of the correlation function: none of the
parameters quoted in Table 2 change by more than a few
per cent. Thus we can say that small errors of the selection
function do not influence our main results. This insensitivity
is due to the fact that the size of our sample is much larger
than the scale of interest.

5 COMPARISON WITH MODELS

In this Section we compare our empirical correlation func-
tion of clusters of galaxies with correlation functions cal-
culated for several models. We use CDM-models of struc-
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Figure 5. The influence of procedural artefacts on the correlation function. In the left panel for the sample with redshifts in rich
superclusters dots show the unsmoothed correlation function; dotted, solid, and dashed lines show the correlation function smoothed
with Gaussian dispersion 6.5, 13, and 20 h−1 Mpc, respectively. In the right panel the influence of the selection function in the correlation
function is given. The dotted line is for the selection function with parameters s0 = 0.14, d0 = 1, d1 = 0.50; the solid line is for selection
function s0 = 0.38, d0 = 1, d1 = 0.80 (correct values); and the dashed line for selection function with s0 = 0.38, d0 = 1, d1 = 0.90.

Figure 6. The correlation functions of clusters for CDM models.
Solid lines are for clusters in double conical subsamples located in
poor superclusters (with less than 8 members) and dotted lines
are for clusters in double conical volumes in rich superclusters
(with at least 8 members).

ture evolution, models with a double power-law spectrum,
as well as geometrical models with randomly and regularly
located superclusters. Our main questions are: Can the ob-
served correlation function of clusters of galaxies be repro-
duced by conventional models of structure evolution? If not,
what changes in models are needed to reproduce the ob-
served function?

5.1 Comparison with CDM-models

We have calculated several N-body models of structure evo-
lution. One model is based on the standard CDM-scenario
of structure formation. It has the structure parameter Γ =
Ωh = 0.5, with the Hubble parameter h = 0.5, and the
density parameter Ω = 1. The second model was calculated
with a double power-law perturbation spectrum, with spec-
tral index n = 1 on large scales (wavenumber k < k0), index
n = −1.5 on small scales (wavenumber k > k0), and tran-

sition at wavelength λ0 = 2π/k0 = 115 h−1 Mpc. Models
were calculated using a particle-mesh code with 1283 par-
ticles and 2563 cells in a cube of size L = 700 h−1 Mpc.
Clusters of galaxies were searched with a method similar to
the “friends-of-friends” algorithm. The mass of clusters is
determined from the number of particles in volumes of en-
hanced density. The lower limit of the mass of clusters was
chosen so that the total number of clusters in the sample was
in agreement with the mean spatial density of Abell–ACO
clusters.

We calculated the correlation function of model clus-
ters for the whole box using all clusters and also for double
conical subsamples of clusters in rich and poor superclus-
ters. We applied a supercluster search algorithm identical to
the one used for the search of real superclusters with neigh-
bourhood radius 24 h−1 Mpc. In each of our simulations
we constructed three double conical volumes (cone axes di-
rected along the three axes) and searched clusters in these
volumes. Clusters were divided into two populations – one in
rich superclusters and the other in poor ones, with limiting
richness Ncl = 8 as in the real case. Correlation functions
found for the CDM model are plotted in Figure 6.

There are no regular oscillations in the correlation func-
tion in rich superclusters in either the whole cubical sample
or in the double conical volumes. The correlation functions
of simulated clusters in the double conical volumes and lo-
cated in rich superclusters have several peaks and valleys on
large scales, but the location and amplitude of these peaks is
random (for details see next subsection). Model clusters in
poor superclusters have a smooth correlation function close
to zero at large scales.

This result is expected as the power spectrum of CDM-
models is a smooth function of wavenumber, with a contin-
uous change in the slope of the spectrum. For such spectra
oscillations of the correlation function are not expected since
oscillations occur only in the case when the spectrum has a
peak and the slope near the peak changes suddenly (Frisch
et al. 1995, Paper III).

This does not exclude the possibility that, in some re-
alizations of a model with a CDM-type perturbation spec-
trum, peaks and valleys in the correlation function of clus-
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Figure 7. Parameters of oscillations of the correlation function: period, amplitude (left panel), and their scatters, Dperiod, Dampl (right
panel). The large filled circle shows the observed values for clusters in rich superclusters (sample ACO.R.H8); dots are respective values
for 1000 realizations of the random supercluster model, crosses for the standard CDM model, and stars for a low-density CDM model
with cosmological constant (see Paper III for details). Contours indicate the probability level for random superclusters outside of which
1 % of periods and amplitudes are found. To calculate parameters of oscillations for this figure we used smoothed correlation functions.
In this case the amplitude of oscillations from observations is A = 0.186 (the value given in Table 2 corresponds to the amplitude of the
unsmoothed correlation function).

ters in rich superclusters are located more regularly. This
occurs when the perturbation spectrum accidently has an
extra peak near its maximum. In the next subsection we
study more closely the possibility of how frequently such a
peak can occur.

5.2 Comparison with random supercluster

samples

To investigate the possible generation of regular oscillations
in the correlation function for double conical volumes of clus-
ters in rich superclusters we must generate a large number of
realizations of models. The distribution of clusters in mod-
els is determined essentially by medium scale perturbations
which are still in the linear stage of evolution. Thus it is not
necessary to use conventional N-body calculations of struc-
ture evolution. Borgani et al. (1995) have used the Zeldovich
approximation for a similar task. In this paper we shall ap-
ply an even simpler procedure to investigate the regularity
of the large-scale distribution of clusters.

In the present problem it is not essential to use exactly
the CDM spectrum. What is important is to apply a broad
band spectrum with a smooth transition between regions
on large and short wavelengths. As demonstrated in Paper
III, the power spectrum of the random supercluster model
is rather similar to the power spectrum of CDM-models, in
particular in the medium wavelength region of interest for
the present study. Correlation functions of these models are
also very similar. We make use of this similarity and generate
a large number of realizations for the random supercluster
model to see how frequently such a model can reproduce
properties of the real correlation function.

In this model (for details see Paper III) superclusters are
located randomly in space. They contain clusters of galaxies

in a number which is in agreement with the observed mul-
tiplicity function of superclusters. To imitate the observa-
tions we choose a double conical sub-volume from the whole
cubical sample and select clusters which belong to rich su-
perclusters with at least 8 member clusters. The full side
length of the cube is taken to be L = 700 h−1 Mpc. The
number of superclusters in models is taken to be approx-
imately equal to 650; in this case the number of clusters
in rich superclusters of double conical subsamples is about
300 as in the observed cluster sample in rich superclusters.
Our calculations show that the correlation function of this
model also has maxima and minima, but they are located
randomly, similar to the cluster correlation function of CDM
models. We can characterise oscillations and their regularity
by the following parameters: the mean period of oscillations,
its rms scatter, the mean amplitude of oscillations, and its
rms scatter.

Results of our calculations for 1000 realizations of the
random supercluster model are shown in Figure 7, separately
for the amplitude vs. period and for the scatter of the ampli-
tude vs. the scatter of the period. If a point lies outside the
1 % contour, it has a probability of occurrence of <1 %. We
see that for both variable parameter pairs the observational
point lies just outside the 1 % contour. In other words, the
probability that our observed sample is taken from the same
model is approximately 1 % for both variable pairs.

We applied a further test using the fine details of the
correlation function. As noted above, the position of the first
secondary maximum of the correlation function, as well as
mean differences between the second and first, and between
the third and second maxima, are in certain fixed relations
with the period of oscillation. We can define a correlation
function variance parameter as follows:

ψ2 = (f0 − f00)
2 + (f1 − f10)

2 + (f2 − f20)
2, (6)



Oscillating correlation function 11

Figure 8. The integrated frequency distribution of the correla-
tion function variance parameter ψ. The observed value of ψ is
noted by a vertical bar.

where f0, f1, and f2 are values of parameters defined by Eqs
(12) – (14) of Paper III and found for the test model; f00, f10,
and f20 are respective values calculated for the geometric
model with regular structure. As demonstrated in Paper III,
these parameters are rather stable and depend only little on
models with different details of the structure. Essential is the
presence of a regular network of superclusters and voids.
Thus we have calculated the correlation function variance
parameter ψ for all our 1000 test models (see Figure 8).

This calculation shows that the mean value of the pa-
rameter is ψ = 1.4. The distribution is very asymmetric with
a long tail towards large ψ values. The lowest value for these
1000 realizations is 0.1. The observed value is ψ ≈ 0.14. We
see that the probability that the observed case is taken ran-
domly from the family of random supercluster model is also
about 1 %. All our variables used in these tests are inde-
pendent of each other, thus the probability to get all five
parameters fitted once by the random supercluster model
simultaneously is much smaller than 1 %.

Even if using the random supercluster model is a fast
but not ideal procedure for calculating these probabilities
the main result would be hardly changed by more ingenious
simulations: the probability is very small. Thus we conclude
that within standard cosmological models it is difficult to
generate the observed correlation function.

6 POWER SPECTRUM

Which perturbation spectrum can produce the observed
correlation function of clusters in rich superclusters? An-
alytic calculations made in Paper III show that the correla-
tion function has an oscillatory behaviour only if the power
spectrum has a peak at the corresponding wavenumber. In
this paper it was also demonstrated that the sharpness and
height of the peak in the spectrum determines the character
of oscillations of the correlation function.

Here we estimate the possible shape of the spectrum on
scales of interest using comparison with models with known
spectra. We shall compare the spectra and correlation func-
tions of three models: the standard CDM model, the double

Figure 9. Power spectra for the CDM model, the double power-
law model, and the mixed geometrical model, plotted with solid,
dotted, and dashed lines, respectively.

power-law model, and a mixed geometrical model consist-
ing of two populations, one with superclusters located ran-
domly along regularly spaced rods and the other of irregu-
larly spaced superclusters (see Paper III for details). Power
spectra of these three models are shown in Figure 9.

We see that the double-power law model and the mixed
model have rather similar spectra near the maximum. Both
models have also similar correlation functions with weak os-
cillations (see Figure 4 of Paper III). The oscillations are
more regular in the geometrical model, as expected. How-
ever, the differences between models are not large. The max-
imal deviation of the spectrum near the maximum from the
corresponding CDM-type spectrum is ∼ 0.2 dex, i.e. about
a factor of 1.25 in amplitude.

These models show that already a modest deviation
from the standard CDM spectrum produces an oscillating
correlation function for clusters in rich superclusters.

The actual power spectrum of our cluster sample has a
peak of even higher amplitude (see E97).

7 CONCLUSIONS

We have determined the correlation function for clusters of
galaxies separately for all clusters and for clusters located in
rich and in poor superclusters. The correlation function of
clusters in rich superclusters that form the skeleton of the
supercluster-void network has an oscillatory behaviour with
a period of 115 ± 15 h−1 Mpc. Within an interval of ∼ 650
h−1 Mpc over which observational data are available, five
secondary maxima and minima of the correlation function
are seen. The amplitude of oscillations is larger for clusters
located in very rich superclusters.

The scale of the supercluster-void network found here
on the basis of the cluster correlation function is rather close
to the scale found using other methods, such as void diame-
ter analysis, pencil-beam studies, or absorbers in the line-of-
sight to QSOs (Quashnock et al. 1996), although the latter
applies to higher redshifts.

The reality of oscillations of the cluster correlation func-
tion is supported by the following arguments.
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(1) The error corridor of the correlation function de-
termined for clusters in rich superclusters is much smaller
than the amplitude of oscillations. (2) Oscillations are seen
in cluster samples located in both Galactic hemispheres. (3)
Similar oscillations with lower amplitude are observed in
the Las Campanas Redshift Survey of galaxies by Tucker et
al. (1995, 1997). (4) In all samples the shape of the oscillat-
ing correlation function follows almost exactly the expected
shape for a quasi-regular network of superclusters and voids.
(5) The double conical shape of the volume sampled by clus-
ters cannot influence the results. (6) Parameters of the os-
cillations practically do not depend on the smoothing length
of the correlation function, nor on the neighbourhood radius
used in supercluster definition, or on errors of the selection
function used to calculate the correlation function.

The correlation length of clusters of galaxies depends
on the cluster population: for clusters in poor superclusters
it is about 17 h−1 Mpc; for clusters in rich superclusters it
is about 45 h−1 Mpc.

We have compared the observed correlation function
with correlation functions calculated for clusters in CDM-
models and for models with randomly distributed superclus-
ters. These models have a broad-band power spectrum with
a smooth transition between the positive spectral index at
long wavelengths and a negative index at small wavelengths.
In these models the correlation function of clusters in rich su-
perclusters located in double conical volumes also has peaks
and valleys, but these peaks and valleys are distributed ran-
domly and have random amplitudes. The probability that
a model with a broad-band power spectrum has parameters
of oscillations of the correlation function similar to observed
parameters is very low (≪ 1 %).

Analytical calculations show that oscillations of the cor-
relation function appear only in case that the power spec-
trum has a peak at the wavelength equal to the period of
oscillations. We have compared spectra and correlation func-
tions of models with various heights of the peak in the spec-
trum. These calculations show that it is possible to generate
an oscillating correlation function for clusters in rich super-
clusters if the height of the peak is of the order of a factor
of at least 1.25 in amplitude over the conventional smooth
spectrum.

The fact that the amplitude of oscillations near the last
maximum is still rather large suggests that the coherence
of positions of high-density regions extends over very large
separations (at least 10 % of the diameter of the observable
Universe).
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